Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials. A short review.

Author:

Summa Paulina1,Samojeden Bogdan1,Motak Monika1

Affiliation:

1. AGH University of Science and Technology , Faculty of Energy and Fuels , Al. Mickiewicza 30, 30-059 Kraków , Poland

Abstract

Abstract In order to produce valuable syngas, industrial processes of dry reforming of methane and steam reforming of methane must be further developed. This paper is focused on reviewing recently examined catalysts, supporting the mentioned technologies. In both processes the most popular active material choice is usually nickel, due to its good availability. On the other hand, noble metals, such as ruthenium, rhodium or platinum, provide better performance, however the solution is not cost-effective. Materials used as a support influence the catalytic activity. Oxides with basic properties, such as MgO, Al2O3, CeO2, are frequently used as carriers. One of the most promising materials for reforming of methane technologies are hydrotalcites, due to adjustable composition, acid-base properties and possibility of incorporation of various metals and complexes.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

Reference58 articles.

1. 1. Rostrup-Nielsen, J.R. (2004) Fuels and energy for the future: The role of catalysis Catal Rev – Sci Eng, https://doi.org/10.1081/CR-200036716.10.1081/CR-200036716

2. 2. Turner, J.A. (2004) Sustainable hydrogen production Science (80-), https://doi.org/10.1126/science.1103197.10.1126/.1103197

3. 3. Samojeden, B. (2018). The current and future trends in chemical CO2 utilization In: Contemp. Probl. Power Eng. Environ. Prot. 2017 222–226.

4. 4. Fish, J.D. & Hawn, D.C. (1987). Closed Loop Thermochemical Energy Transport Based on CO2 Reforming of Methane: Balancing the Reaction Systems J. Sol. Energy Eng. 109(3) 215, https://doi.org/10.1115/1.3268209.10.1115/1.3268209

5. 5. Dry, M.E. (2002). The Fischer–Tropsch process: 1950–2000 Catal Today 71(3–4) 227–241, https://doi.org/10.1016/S0920-5861(01)00453-9.10.1016/S0920-5861(01)00453-9

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3