Studying removal of anionic dye by prepared highly adsorbent surface hydrogel nanocomposite as an applicable for aqueous solution

Author:

Aljeboree Aseel M.,Alkaim Ayad F.

Abstract

AbstractIn this study, a Sodium alginate-g-poly (acrylamide-clay)/TiO2 hydrogel nanocomposite [SA-g-p(AM-Bn)/TiO2] was synthesized using the biopolymer sodium alginate (SA), acrylamide (AM), and bentonite clay (Bn) as hybrid materials embedded with titanium dioxide nanoparticles (TiO2NPs) for the removal of toxic Congo Red (CR) dye from an aqueous solution. The [SA-g-p(AM-Bn)/TiO2] nanocomposite has been described on the basis of thermal stability, morphological analysis, estimation of functional group, and crystalline/amorphous character by TGA, EFSEM/EDX, TEM, FT-IR, and XRD analysis, respectively. The effects of operational parameters toward the CR dye adsorption on [SA-g-p(AM-Bn)/TiO2], including contact time, adsorbent dosage, initial concentration, initial pH, and temperature were investigated. The maximum adsorption efficiency was found to be 185.12 mg/g for [SA-g-p(AM-Bn)/TiO2] in 100 mg/L of solution CR at pH 6.0 within 1 h. The equilibrium isotherms, kinetics, and thermodynamics parameters of adsorption were examined, and results showed that the isotherm fitted the Freundlich model and the kinetics adsorption model of CR followed pseudo-first-order, thus indicating physisorption of anionic-CR onto the sorbent due to the development of an electrostatic attraction bond. Thermodynamic parameters for [SA-g-p(AM-Bn)/TiO2] have values (ΔG and ΔH) reflecting the spontaneous and endothermic nature of the adsorption processes. Moreover, [SA-g-p(AM-Bn)/TiO2] presented outstanding excellent reusability and recyclability with a relatively best removal percentage as compared to [SA-g-p(AM-Bn)] and suggested their applicability towards the textile industry and water purification purposes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3