Attention-LSTM based prediction model for aircraft 4-D trajectory

Author:

Jia Peiyan,Chen Huiping,Zhang Lei,Han Daojun

Abstract

AbstractAviation activities are constantly increasing as a result of the growth of the global economic system. How to increase airspace capacity within the limited airspace resources while ensuring smooth and safe aircraft operations is a challenge for civil aviation today. Air traffic safety is supported by accurate trajectory prediction. The way-points are relatively sparse, and there are many uncertain factors in the flight, which greatly increases the difficulty of trajectory prediction. So, it is vital to enhance trajectory prediction accuracy. An attention-LSTM trajectory prediction model is proposed in this paper, which is split into two parts. The time-series features of the flight trajectory are extracted in the initial stage using the long-short-term memory neural network (LSTM). In the second part, the attention mechanism is employed to process the extracted sequence features. The impact of secondary elements is reduced while the influence of primary ones is increased according to the attention mechanism. We used the advanced models in trajectory prediction as the comparison models, such as LSTM, support vector machine (SVM), back propagation (BP) neural network, Hidden Markov Model (HMM), and convolutional long-term memory neural network (CNN-LSTM). The model we proposed is superior to the model above based on quantitative analysis and comparison.

Funder

the Scientific and technological project of Henan Province

Foundation of University Young Key Teacher of Henan Province

Key scientific research projects of colleges and universities in Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3