Autonomous Underwater Vehicle Trajectory Prediction with the Nonlinear Kepler Optimization Algorithm–Bidirectional Long Short-Term Memory–Time-Variable Attention Model

Author:

Yao Jieen12,Yang Junzheng3,Zhang Chenghao12ORCID,Zhang Jing123ORCID,Zhang Tianchi4ORCID

Affiliation:

1. School of Information Science and Engineering, University of Jinan, Jinan 250022, China

2. Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, University of Jinan, Jinan 250022, China

3. School of Data Intelligence, Yantai Institute of Science and Technology, Yantai 265699, China

4. School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Autonomous underwater vehicles (AUVs) have been widely used in ocean missions. When they fail in the ocean, it is important to predict their trajectory. Existing methods rely heavily on historical trajectory data while overlooking the influence of the ocean environment on an AUV’s trajectory. At the same time, these methods fail to use the dependency between variables in the trajectory. To address these challenges, this paper proposes an AUV trajectory prediction model known as the nonlinear Kepler optimization algorithm–bidirectional long short-term memory–time-variable attention (NKOA-BiLSTM-TVA) model. This paper introduces opposition-based learning during the initialization process of the KOA and improves the algorithm by incorporating a nonlinear factor into the planet position update process. We designed an attention mechanism layer that spans both time and variable dimensions, called TVA. TVA can extract features from both the time and variable dimensions of the trajectory and use the dependency between trajectory variables to predict the trajectory. First, the model uses a convolutional neural network (CNN) to extract spatial features from the trajectory. Next, it combines a BiLSTM network with TVA to predict the AUV’s trajectory. Finally, the improved NKOA is used to optimize the model’s hyperparameters. Experimental results show that the NKOA-BiLSTM-TVA model has an excellent parameter optimization effect and higher prediction accuracy in AUV trajectory prediction tasks. It also achieves excellent results in ship trajectory prediction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3