Fabrication of multifunctional ZnO@tannic acid nanoparticles embedded in chitosan and polyvinyl alcohol blend packaging film

Author:

Sultan MahaORCID,Youssef Ahmed,Baseer Rasha A.ORCID

Abstract

AbstractThe current study explores biodegradable packaging materials that have high food quality assurance, as food deterioration is mostly caused by UV degradation and oxidation, which can result in bad flavor and nutrition shortages. Thus, new multifunctional zinc oxide nanoparticles/tannic acid (ZnO@TA) with antioxidant and antibacterial activities were incorporated into polyvinyl alcohol/chitosan (PVA/CH) composite films with different ratios (1%, 3%, and 5% based on the total dry weight of the film) via a solution blending method in a neutral aqueous solution. Additionally, ZnO nanoparticles have unique antibacterial mechanisms through the generation of excessive reactive oxygen species (ROS) that may lead to intensify pathogen resistance to conventional antibacterial agents. Thus, minimizing the negative effects caused by excessive levels of ROS may be possible by developing unique, multifunctional ZnO nanoparticles with antioxidant potential via coordination bond between tannic acid and ZnO nanoparticles (ZnO@TA). ZnO@TA nanoparticles were examined using Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of the incorporation of ZnO@TA nanoparticles on the barrier, mechanical, thermal, antioxidant, antimicrobial, and UV blocking characteristics of chitosan/polyvinyl alcohol (ZnO@TA@CH/PVA) films was investigated. The lowest water vapor and oxygen permeability and the maximum antioxidant capacity% are 31.98 ± 1.68 g mm/m2 kPa day, 0.144 ± 5.03 × 10–2 c.c/m2.day, and 69.35 ± 1.6%, respectively, which are related to ZnO@TA(50)@CH/PVA. Furthermore, ZnO@TA(50)@CH/PVA film exhibits the maximum UV shielding capacity of UVB (99.994). ZnO@TA(50) @PVA/CH films displayed better tensile strength and Young`s modulus of 48.72 ± 0.23 MPa and 2163.46 ± 61.4 MPa, respectively, than the other film formulations. However, elongation % at break exhibited the most reduced value of 19.62 ± 2.3%. ZnO@TA@CH/PVA film exhibits the largest inhibition zones of 11 ± 1.0, 12.3 ± 0.57, and 13.6 ± 0.57 mm against Staphylococcus aureus, Aspergillus flavus, and Candida albicans, respectively. In accordance with these results, ZnO@TA@CH/PVA films could be utilized for food preservation for the long-term.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3