First evidence of plastic fallout from the North Pacific Garbage Patch

Author:

Egger MatthiasORCID,Sulu-Gambari Fatimah,Lebreton Laurent

Abstract

AbstractThe infamous garbage patches on the surface of subtropical oceanic gyres are proof that plastic is polluting the ocean on an unprecedented scale. The fate of floating plastic debris ‘trapped’ in these gyres, however, remains largely unknown. Here, we provide the first evidence for the vertical transfer of plastic debris from the North Pacific Garbage Patch (NPGP) into the underlying deep sea. The numerical and mass concentrations of plastic fragments (500 µm to 5 cm in size) suspended in the water column below the NPGP follow a power law decline with water depth, reaching values <0.001 pieces/m3 and <0.1 µg/m3 in the deep sea. The plastic particles in the NPGP water column are mostly in the size range of particles that are apparently missing from the ocean surface and the polymer composition of plastic in the NPGP water column is similar to that of floating debris circulating in its surface waters (i.e. dominated by polyethylene and polypropylene). Our results further reveal a positive correlation between the amount of plastic debris at the sea surface and the depth-integrated concentrations of plastic fragments in the water column. We therefore conclude that the presence of plastics in the water column below the NPGP is the result of ‘fallout’ of small plastic fragments from its surface waters.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3