Author:
Raza Muhammad Aown Sammar,Aslam Muhammad Usman,Valipour Mohammad,Iqbal Rashid,Haider Imran,Mustafa Abd El-Zaher M. A.,Elshikh Mohamed S.,Ali Iftikhar,Roy Rana,Elshamly Ayman M. S.
Abstract
AbstractDrought stress is a worldwide threat to the productivity of crops, especially in arid and semi-arid zones of the world. In the present study, the effect of selenium (Se) seed priming on the yield of quinoa under normal and drought conditions was investigated. A pot trial was executed to enhance the drought tolerance in quinoa by Se seed priming (0, 3, 6, and 9 mg Se L−1). The plants were exposed to water stress at three different growth stages of quinoa, viz. multiple leaf, flowering, and seed filling. It was noticed that drought significantly affected the yield components of quinoa, however, Se priming improved the drought tolerance potential and yield of quinoa by maintaining the plant water status. Se priming significantly increased main panicle length (20.29%), main panicle weight (26.43%), and thousand grain weight (15.41%) as well as the gas exchange parameters (transpiration rate (29.74%), stomatal conductance (35.29%), and photosynthetic rate (28.79%), total phenolics (29.36%), leaf chlorophyll contents (35.97%), water relations (leaf relative water contents (14.55%), osmotic potential (10.32%), water potential (38.35%), and turgor potential (31.37%), and economic yield (35.99%) under drought stress. Moreover, Se priming markedly improved grain quality parameters i.e., phosphorus, potassium, and protein contents by 21.28%, 18.92%, and 15.04%, respectively. The principal component analysis connected the various study scales and showed the ability of physio-biochemical factors to describe yield fluctuations in response to Se seed priming under drought conditions. In conclusion, a drought at the seed-filling stage has a far more deleterious impact among other critical growth stages and seed priming with Se (6 mg L−1) was found more effective in alleviating the detrimental effects of drought on the grain yield of quinoa.
Funder
Projekt DEAL
Christian-Albrechts-Universität zu Kiel
Publisher
Springer Science and Business Media LLC