Seed priming with selenium improves growth and yield of quinoa plants suffering drought

Author:

Raza Muhammad Aown Sammar,Aslam Muhammad Usman,Valipour Mohammad,Iqbal Rashid,Haider Imran,Mustafa Abd El-Zaher M. A.,Elshikh Mohamed S.,Ali Iftikhar,Roy Rana,Elshamly Ayman M. S.

Abstract

AbstractDrought stress is a worldwide threat to the productivity of crops, especially in arid and semi-arid zones of the world. In the present study, the effect of selenium (Se) seed priming on the yield of quinoa under normal and drought conditions was investigated. A pot trial was executed to enhance the drought tolerance in quinoa by Se seed priming (0, 3, 6, and 9 mg Se L−1). The plants were exposed to water stress at three different growth stages of quinoa, viz. multiple leaf, flowering, and seed filling. It was noticed that drought significantly affected the yield components of quinoa, however, Se priming improved the drought tolerance potential and yield of quinoa by maintaining the plant water status. Se priming significantly increased main panicle length (20.29%), main panicle weight (26.43%), and thousand grain weight (15.41%) as well as the gas exchange parameters (transpiration rate (29.74%), stomatal conductance (35.29%), and photosynthetic rate (28.79%), total phenolics (29.36%), leaf chlorophyll contents (35.97%), water relations (leaf relative water contents (14.55%), osmotic potential (10.32%), water potential (38.35%), and turgor potential (31.37%), and economic yield (35.99%) under drought stress. Moreover, Se priming markedly improved grain quality parameters i.e., phosphorus, potassium, and protein contents by 21.28%, 18.92%, and 15.04%, respectively. The principal component analysis connected the various study scales and showed the ability of physio-biochemical factors to describe yield fluctuations in response to Se seed priming under drought conditions. In conclusion, a drought at the seed-filling stage has a far more deleterious impact among other critical growth stages and seed priming with Se (6 mg L−1) was found more effective in alleviating the detrimental effects of drought on the grain yield of quinoa.

Funder

Projekt DEAL

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3