New approach to determine the surface and interface thermodynamic properties of H-β-zeolite/rhodium catalysts by inverse gas chromatography at infinite dilution

Author:

Hamieh Tayssir,Ali Ahmad Ali,Roques-Carmes Thibault,Toufaily Joumana

Abstract

AbstractThe thermodynamic surface properties and Lewis acid–base constants of H-β-zeolite supported rhodium catalysts were determined by using the inverse gas chromatography technique at infinite dilution. The effect of the temperature and the rhodium percentage supported by zeolite on the acid base properties in Lewis terms of the various catalysts were studied. The dispersive component of the surface energy of Rh/H-β-zeolite was calculated by using both the Dorris and Gray method and the straight-line method. We highlighted the role of the surface areas of n-alkanes on the determination of the surface energy of catalysts. To this aim various molecular models of n-alkanes were tested, namely Kiselev, cylindrical, Van der Waals, Redlich–Kwong, geometric and spherical models. An important deviation in the values of the dispersive component of the surface energy $${\gamma }_{s}^{d}$$ γ s d determined by the classical and new methods was emphasized. A non-linear dependency of $${\gamma }_{s}^{d}$$ γ s d with the specific surface area of catalysts was highlighted showing a local maximum at 1%Rh. The study of RTlnVn and the specific free energy ∆Gsp(T) of n-alkanes and polar solvents adsorbed on the various catalysts revealed the important change in the acid properties of catalysts with both the temperature and the rhodium percentage. The results proved strong amphoteric behavior of all catalysts of the rhodium supported by H-β-zeolite that actively react with the amphoteric solvents (methanol, acetone, tri-CE and tetra-CE), acid (chloroform) and base (ether) molecules. It was shown that the Guttmann method generally used to determine the acid base constants KA and KD revealed some irregularities with a linear regression coefficient not very satisfactory. The accurate determination of the acid–base constants KA, KD and K of the various catalysts was obtained by applying Hamieh’s model (linear regression coefficients approaching r2 ≈ 1.000). It was proved that all acid base constants determined by this model strongly depends on the rhodium percentage and the specific surface area of the catalysts.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3