Microcapsulated biocides for the targeted control of invasive bivalves

Author:

Tang FengORCID,Aldridge David C.

Abstract

AbstractInvasive alien species (IAS) are one of the greatest drivers of ecological change. Typically, control uses chemical agents that often are ineffective, harmful to non-target organisms, and environmentally persistent. Bivalves are frequently high impact IAS, but have proven particularly hard to control due to their valve-closing response when exposed to conventional control agents. Microencapsulation of biocides with edible coatings represents a highly targeted delivery route, bypassing avoidance responses and accumulating in bivalves through their prodigious filter feeding. Uneaten microcapsules degrade and become biologically inactive within hours thus reducing potential impacts on non-target biota. We manufactured two new formulations of microcapsules (BioBullets). Particles were designed to mimic natural food particles (algae) in terms of size (9.5 ± 0.5 to 19.4 ± 1.3 SE µm diameter), buoyancy (near neutral) and shape (spherical). Laboratory exposures demonstrated that two formulations effectively controlled the Gulf wedge clam Rangia cuneata, an IAS currently spreading rapidly through Europe. A single dose of 2–6 mg L−1 of the active ingredient in a static system achieved 90% mortality after 30 days of exposure. Microencapsulation offers an effective and targeted management tool for rapid responses following the early detection of both Gulf wedge clams and many other filter-feeding IAS, and may be especially effective in closed systems or where populations remain very localised.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Gulbenkian Yuval Cambridge Studentship

Dawson Lectureship at St. Catharine’s College

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3