Device simulations with A U-Net model predicting physical quantities in two-dimensional landscapes

Author:

Lee Wen-Jay,Hsieh Wu-Tsung,Fang Bin-Horn,Kao Kuo-Hsing,Chen Nan-Yow

Abstract

AbstractAlthough Technology Computer-Aided Design (TCAD) simulation has paved a successful and efficient way to significantly reduce the cost of experiments under the device design, it still encounters many challenges as the semiconductor industry goes through rapid development in recent years, i.e. Complex 3D device structures, power devices. Recently, although machine learning has been proposed to enable the simulation acceleration and inverse‑design of devices, which can quickly and accurately predict device performance, up to now physical quantities (such as electric field, potential energy, quantum-mechanically confined carrier distributions, and so on) being essential for understanding device physics can still only be obtained by traditional time-consuming self-consistent calculation. In this work, we employ a modified U-Net and train the models to predict the physical quantities of a MOSFET in two-dimensional landscapes for the first time. Errors in predictions by the two models have been analyzed, which shows the importance of a sufficient amount of data to prediction accuracy. The computation time for one landscape prediction with high accuracy by our well-trained U-Net model is much faster than the traditional approach. This work paves the way for interpretable predictions of device simulations based on convolutional neural networks.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3