Author:
Grynko Oleksandr,Thibault Tristen,Pineau Emma,Juska Gytis,Reznik Alla
Abstract
AbstractPolycrystalline Lead Oxide (poly-PbO) was considered one of the most promising photoconductors for the direct conversion X-ray medical imaging detectors due to its previous success in optical imaging, i.e., as an optical target in so-called Plumbicon video pick-up tubes. However, a signal lag which accompanies X-ray excitation, makes poly-PbO inapplicable as an X-ray-to-charge transducer in real-time X-ray imaging. In contrast, the recently synthesized Amorphous Lead Oxide (a-PbO) photoconductor is essentially lag-free. Here, we report on our approach to a PbO detector where a thin layer of a-PbO is combined with a thick layer of poly-PbO for lag-free operation. In the presented a-PbO/poly-PbO bilayer structure, the poly-PbO layer serves as an X-ray-to-charge transducer while the a-PbO acts as a lag prevention layer. The hole mobility in the a-PbO/poly-PbO bilayer structure was measured by photo-Charge Extraction by Linearly Increasing Voltage technique at different temperatures and electric fields to investigate charge transport properties. It was found that the hole mobility is similar to that in a-Se—currently the only commercially viable photoconductor for the direct conversion X-ray detectors. Evaluation of the X-ray temporal performance demonstrated complete suppression of signal lag, allowing operation of the a-PbO/poly-PbO detector in real-time imaging.
Funder
Natural Sciences and Engineering Research Council of Canada
Mitacs Accelerate
Teledyne DALSA
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献