Assessment of hybrid population immunity to SARS-CoV-2 following breakthrough infections of distinct SARS-CoV-2 variants by the detection of antibodies to nucleoprotein

Author:

den Hartog Gerco,Andeweg Stijn P.,Hoeve Christina E.,Smits Gaby,Voordouw Bettie,Eggink Dirk,Knol Mirjam J.,van Binnendijk Robert S.

Abstract

AbstractImmunity induced by vaccination and infection, referred to as hybrid immunity, provides better protection against SARS-CoV-2 infections compared to immunity induced by vaccinations alone. To assess the development of hybrid immunity we investigated the induction of Nucleoprotein-specific antibodies in PCR-confirmed infections by Delta or Omicron in vaccinated individuals (n = 520). Eighty-two percent of the participants with a breakthrough infection reached N-seropositivity. N-seropositivity was accompanied by Spike S1 antibody boosting, and independent of vaccination status or virus variant. Following the infection relatively more antibodies to the infecting virus variant were detected. In conclusion, these data show that hybrid immunity through breakthrough infections is hallmarked by Nucleoprotein antibodies and broadening of the Spike antibody repertoire. Exposure to future SARS-CoV-2 variants may therefore continue to maintain and broaden vaccine-induced population immunity.

Funder

Ministry of Health Welfare and Sports

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3