Applying oversampling before cross-validation will lead to high bias in radiomics

Author:

Demircioğlu AydinORCID

Abstract

AbstractClass imbalance is often unavoidable for radiomic data collected from clinical routine. It can create problems during classifier training since the majority class could dominate the minority class. Consequently, resampling methods like oversampling or undersampling are applied to the data to class-balance the data. However, the resampling must not be applied upfront to all data because it would lead to data leakage and, therefore, to erroneous results. This study aims to measure the extent of this bias. Five-fold cross-validation with 30 repeats was performed using a set of 15 radiomic datasets to train predictive models. The training involved two scenarios: first, the models were trained correctly by applying the resampling methods during the cross-validation. Second, the models were trained incorrectly by performing the resampling on all the data before cross-validation. The bias was defined empirically as the difference between the best-performing models in both scenarios in terms of area under the receiver operating characteristic curve (AUC), sensitivity, specificity, balanced accuracy, and the Brier score. In addition, a simulation study was performed on a randomly generated dataset for verification. The results demonstrated that incorrectly applying the oversampling methods to all data resulted in a large positive bias (up to 0.34 in AUC, 0.33 in sensitivity, 0.31 in specificity, and 0.37 in balanced accuracy). The bias depended on the data balance, and approximately an increase of 0.10 in the AUC was observed for each increase in imbalance. The models also showed a bias in calibration measured using the Brier score, which differed by up to −0.18 between the correctly and incorrectly trained models. The undersampling methods were not affected significantly by bias. These results emphasize that any resampling method should be applied correctly only to the training data to avoid data leakage and, subsequently, biased model performance and calibration.

Funder

Universitätsklinikum Essen

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3