Computational analysis of speed-accuracy tradeoff

Author:

Penconek Marcin

Abstract

AbstractSpeed-accuracy tradeoff (SAT) in the decision making of humans and animals is a well-documented phenomenon, but its underlying neuronal mechanism remains unclear. Modeling approaches have conceptualized SAT through the threshold hypothesis as adjustments to the decision threshold. However, the leading neurophysiological view is the gain modulation hypothesis. This hypothesis postulates that the SAT mechanism is implemented through changes in the dynamics of the choice circuit, which increase the baseline firing rate and the speed of neuronal integration. In this paper, I investigated alternative computational mechanisms of SAT and showed that the threshold hypothesis was qualitatively consistent with the behavioral data, but the gain modulation hypothesis was not. In order to reconcile the threshold hypothesis with the neurophysiological evidence, I considered the interference of alpha oscillations with the decision process and showed that alpha oscillations could increase the discriminatory power of the decision system, although they slowed down the decision process. This suggests that the magnitude of alpha waves suppression during the event related desynchronization (ERD) of alpha oscillations depends on a SAT condition and the amplitude of alpha oscillations is lower in the speed condition. I also showed that the lower amplitude of alpha oscillations resulted in an increase in the baseline firing rate and the speed of neuronal intergration. Thus, the interference of the event related desynchronization of alpha oscillations with a SAT condition explains why an increase in the baseline firing rate and the speed of neuronal integration accompany the speed condition.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference76 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3