Optimizing performance and yield of vertical GaN diodes using wafer scale optical techniques

Author:

Gallagher James C.,Ebrish Mona A.,Porter Matthew A.,Jacobs Alan G.,Gunning Brendan P.,Kaplar Robert J.,Hobart Karl D.,Anderson Travis J.

Abstract

AbstractTo improve the manufacturing of vertical GaN devices for power electronics applications, the effects of defects in GaN substrates need to be better understood. Many non-destructive techniques including photoluminescence, Raman spectroscopy and optical profilometry, can be used to detect defects in the substrate and epitaxial layers. Raman spectroscopy was used to identify points of high crystal stress and non-uniform conductivity in a substrate, while optical profilometry was used to identify bumps and pits in a substrate which could cause catastrophic device failures. The effect of the defects was studied using vertical P-i-N diodes with a single zone junction termination extention (JTE) edge termination and isolation, which were formed via nitrogen implantation. Diodes were fabricated on and off of sample abnormalities to study their effects. From electrical measurements, it was discovered that the devices could consistently block voltages over 1000 V (near the theoretical value of the epitaxial layer design), and the forward bias behavior could consistently produce on-resistance below 2 mΩ cm2, which is an excellent value considering DC biasing was used and no substrate thinning was performed. It was found that high crystal stress increased the probability of device failure from 6 to 20%, while an inhomogeneous carrier concentration had little effect on reverse bias behavior, and slightly (~ 3%) increased the on-resistance (Ron). Optical profilometry was able to detect regions of high surface roughness, bumps, and pits; in which, the majority of the defects detected were benign. However a large bump in the termination region of the JTE or a deep pit can induce a low voltage catastrophic failure, and increased crystal stress detected by the Raman correlated to the optical profilometry with associated surface topography.

Funder

Advanced Research Projects Agency - Energy

Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3