Digital holographic microscopy for real-time observation of surface-relief grating formation on azobenzene-containing films

Author:

Rekola HeikkiORCID,Berdin AlexORCID,Fedele ChiaraORCID,Virkki Matti,Priimagi ArriORCID

Abstract

AbstractLight-induced surface structuring of azobenzene-containing films allows for creation of complex surface relief patterns with varying heights, patterns which would be difficult to create using conventional lithography tools. In order to realize the full potential of these patternable surfaces, understanding their formation dynamics and response to different types of light fields is crucial. In the present work we introduce digital holographic microscopy (DHM) for real time, in-situ observation of surface-relief grating (SRG) formation on azobenzene-containing films. This instrument allows us to measure the surface topography of films while illuminating them with two individually controlled laser beams for creating periodically varying patterns. By utilizing the information of the grating formation dynamics, we combine multiple grating patterns to create pixels with wide gamut structural colors as well as blazed grating structures on the film surface. As long as the material behaviour is linear, any Fourier optical surface can be created utilizing this multiple patterning approach. The DHM instrument presented here has the potential for creating complex 3D surface reliefs with nanometric precision.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3