Exponentially decaying modes and long-term prediction of sea ice concentration using Koopman mode decomposition

Author:

Hogg James,Fonoberova Maria,Mezić Igor

Abstract

AbstractSea ice cover in the Arctic and Antarctic is an important indicator of changes in the climate, with important environmental, economic and security consequences. The complexity of the spatio-temporal dynamics of sea ice makes it difficult to assess the temporal nature of the changes—e.g. linear or exponential—and their precise geographical loci. In this study, Koopman Mode Decomposition (KMD) is applied to satellite data of sea ice concentration for the Northern and Southern hemispheres to gain insight into the temporal and spatial dynamics of the sea ice behavior and to predict future sea ice behavior. We observe spatial modes corresponding to the mean and annual variation of Arctic and Antarctic sea ice concentration and observe decreases in the mean sea ice concentration from early to later periods, as well as corresponding shifts in the locations that undergo significant annual variation in sea ice concentration. We discover exponentially decaying spatial modes in both hemispheres and discuss their precise spatial extent, and also perform predictions of future sea ice concentration. The Koopman operator-based, data-driven decomposition technique gives insight into spatial and temporal dynamics of sea ice concentration not apparent in traditional approaches.

Funder

United States Department of Defense | United States Navy | Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference36 articles.

1. Comiso, J. C., Parkinson, C. L., Gersten, R. & Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 35, 1 (2008).

2. Stroeve, J. C. et al. The Arctics rapidly shrinking sea ice cover: A research synthesis. Clim. Change 110(3), 1005–1027 (2012).

3. Meier, W., et al. 2018 sea ice outlook interim post-season report (2018). https://www.arcus.org/sipn/sea-ice-outlook/2018/interim.

4. Comeau, D., Giannakis, D., Zhao, Z. & Majda, A. J. Predicting regional and pan-Arctic sea ice anomalies with kernel analog forecasting. Clim. Dyn. 2, 1–19 (2018).

5. Kondrashov, D., Chekroun, M., Yuan, X. & Ghil, M. Data-adaptive harmonic decomposition and stochastic modeling of Arctic sea ice 179–205 (Springer, Cham, 2018).

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3