Author:
Avit Geoffrey,Robin Yoann,Liao Yaqiang,Nan Hu,Pristovsek Markus,Amano Hiroshi
Abstract
AbstractGaN nanorods (NRds) with axial InGaN/GaN MQWs insertions are synthesized by an original cost-effective and large-scale nanoimprint-lithography process from an InGaN/GaN MQWs layer grown on c-sapphire substrates. By design, such NRds exhibit a single emission due to the c-axis MQWs. A systematic study of the emission of the NRds by time-resolved luminescence (TR-PL) and power dependence PL shows a diameter-controlled luminescence without significant degradation of the recombination rate thanks to the diameter-controlled strain tuning and QSCE. A blueshift up to 0.26 eV from 2.28 to 2.54 eV (543 nm to 488 nm) is observed for 3.2 nm thick InGaN/GaN QWs with an In composition of 19% when the NRds radius is reduced from 650 to 80 nm. The results are consistent with a 1-D based strain relaxation model. By combining state of the art knowledge of c-axis growth and the strong strain relieving capability of NRds, this process enables multiple and independent single-color emission from a single uniform InGaN/GaN MQWs layer in a single patterning step, then solving color mixing issue in InGaN based nanorods LED devices.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献