Fidelity of WRF model in simulating heat wave events over India

Author:

Gupta Priyanshu,Verma Sunita,Mukhopadhyay Parthasarathi,Bhatla R.,Payra Swagata

Abstract

AbstractThe evaluation of Weather Research and Forecasting (WRF) model has been performed for simulating episodic Heat Wave (HW) events of 2015 and 2016 with varied horizontal resolutions of 27 km for the entire India (d01), 9 km for the North West (NW (d02)) and South East (SE (d03)) domain. Study compares the maximum temperature (Tmax) simulated by WRF model, using six different combination of parameterization schemes, with observations from the India Meteorological Department (IMD) during the HW events. Among the six experiments, Exp2 (i.e., combination of WSM6 microphysics (MP) together with radiation parameterization CAM, Yonsei (PBL), NOAH land surface and Grell-3D convective schemes) is found closest to the observations in reproducing the temperature. The model exhibits an uncertainty of ± 2 °C in maximum temperature (Tmax) for both the regions, suggesting regional temperature is influenced by the location and complex orography. Overall, statistical results reveal that the best performance is achieved with Exp2. Further, to understand the dynamics of rising HW intensity, two case studies of HW days along with influencing parameters like Tmax, RH and prevailing wind distribution have been simulated. Model simulated Tmax during 2015 reaches up to 44 °C in NW and SE part of India. In 2016, HW is more prevailing towards NW, while in SE region Tmax reaches upto 34–38 °C with high RH (60–85%). The comparative research made it abundantly evident that these episodic events are unique in terms of duration and geographical spread which can be used to assess the WRF performance for future projections of HW.

Funder

Ministry of Earth Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3