Ensemble‐based monthly to seasonal precipitation forecasting for Iran using a regional weather model

Author:

Najafi Mohammad Saeed1ORCID,Kuchak Vahid Shokri12

Affiliation:

1. Department of Water Resources Study and Research Water Research Institute Tehran Iran

2. Department of Water Engineering and management Tarbiat Modares University Tehran Iran

Abstract

AbstractMonthly and seasonal precipitation forecasts can potentially assist disaster risk reduction and water resource management. The aim of this study is to assess the skill of an ensemble framework for monthly and seasonal precipitation forecasts over Iran by focusing on system design and model performance evaluation. The ensemble framework presented in this paper is based on a one‐way double‐nested model that uses Weather Research and Forecasting (WRF) modelling system to downscale the second version of the NCEP Climate Forecast System (CFSv2). The performance is evaluated for October–April period at 1‐, 2‐ and 3‐month lead time. Multiple initial conditions, model parameters and physics are used to construct ensemble members. Using quantile mapping (QM) method, the outputs of the model are bias corrected. This methodology is applied for two periods: (i) climatology from 2000 to 2019 to evaluate the model's ability to precipitation forecast on a monthly and seasonal time scale; (ii) the forecast for 2020 to evaluate the model's performance operationally. The model evaluation is performed using the continuous (e.g., RMSE, r, MBE, NSE) and categorical (e.g., POD, FAR, PC, Heidke skill score) assessment metrics. We conclude that model outputs were improved by the QM bias correction method. According to results, the proposed ensemble framework can accurately predict amount of monthly and seasonal precipitation in Iran with an accuracy of 58 to 45% for lead‐1 to 3. For all three lead times, the averaged NSE, CC, MBE, and RMSE were 0.4, 0.56, −15.5, and 41.6, indicating that the framework has reasonable performance. Our results suggest that precipitation forecast accuracy varies with lead time, so the accuracy for lead‐1 is higher than lead‐2 and lead‐3. Additionally, the model's accuracy differs in various regions of the country and decreases in the spring. Using the approach for an operational case, it was found that the spatial features of precipitation predicted by the framework were close to those observed.

Funder

Iran National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3