A framework for design optimization across multiple concepts

Author:

Kenny Angus,Ray Tapabrata,Singh Hemant

Abstract

AbstractIn engineering design, there often exist multiple conceptual solutions to a given problem. Concept design and selection is the first phase of the design process that is estimated to affect up to 70% of the life cycle cost of a product. Currently, optimization methods are rarely used in this phase, since standard optimization methods inherently assume a fixed (given) concept; and undertaking a full-fledged optimization for each possible concept is untenable. In this paper, we aim to address this gap by developing a framework that searches for optimum solutions efficiently across multiple concepts, where each concept may be defined using a different number, or type, of variables (continuous, binary, discrete, categorical etc.). The proposed approach makes progressive data-driven decisions regarding which concept(s) and corresponding solution(s) should be evaluated over the course of search, so as to minimize the computational budget spent on less promising concepts, as well as ensuring that the search does not prematurely converge to a non-optimal concept. This is achieved through the use of a tree-structured Parzen estimator (TPE) based sampler in addition to Gaussian process (GP), and random forest (RF) regressors. Aside from extending the use of GP and RF to search across multiple concepts, this study highlights the previously unexplored benefits of TPE for design optimization. The performance of the approach is demonstrated using diverse case studies, including design of a cantilever beam, coronary stents, and lattice structures using a limited computational budget. We believe this contribution fills an important gap and capitalizes on the developments in the machine learning domain to support designers involved in concept-based design.

Funder

Department of Education and Training | Australian Research Council

Publisher

Springer Science and Business Media LLC

Reference36 articles.

1. Dym, C. L., Little, P. & Orwin, E. Engineering Design: A Project-Based Introduction (Wiley, 2013).

2. Georgiou, A., Haritos, G., Fowler, M. & Imani, Y. Advanced phase powertrain design attribute and technology value mapping. J. Eng. Design Technol. 14, 115–133 (2016).

3. Corbett, J. & Crookall, J. Design for economic manufacture. CIRP Ann. 35, 93–97 (1986).

4. Grubišić, I. & Munić, I. Multiple models in the multi-attribute concept design of fast ferries. In International Design Conference (2006).

5. Mattson, C. A. & Messac, A. Concept selection using s-Pareto frontiers. AIAA J. 41, 1190–1198 (2003).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3