Development and validation of a prediction model for iron status in a large U.S. cohort of women

Author:

Von Holle Ann,O’Brien Katie M.,Janicek Robert,Weinberg Clarice R.

Abstract

AbstractSerum iron levels can be important contributors to health outcomes, but it is not often feasible to rely on blood-based measures for a large epidemiologic study. Predictive models that use questionnaire-based factors such as diet, supplement use, recency of blood donation, and medical conditions could potentially provide a noninvasive alternative for studying health effects associated with iron status. We hypothesized that a model based on questionnaire data could predict blood-based measures of iron status biomarkers. Using iron (mcg/dL), ferritin (mcg/dL), and transferrin saturation (%) based on blood collected at study entry, in a subsample from the U.S.-wide Sister Study (n = 3171), we developed and validated a prediction model for iron with multivariable linear regression models. Model performance based on these cross-sectional data was weak, with R2 less than 0.10 for serum iron and transferrin saturation, but better for ferritin, with an R2 of 0.13 in premenopausal women and 0.19 in postmenopausal women. When menopause was included in the predictive model for the sample, the R2 was 0.31 for ferritin. Internal validation of the estimates indicated some optimism present in the observed prediction model, implying there would be worse performance when applied to new samples from the same population. Serum iron status is hard to assess based only on questionnaire data. Reducing measurement error in both the exposure and outcome may improve the prediction model performance, but environmental heterogeneity, temporal variation, and genetic heterogeneity in absorption and storage may contribute substantially to iron status.

Funder

National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of iron status;Current Opinion in Clinical Nutrition & Metabolic Care;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3