Donor impurity related optical and electronic properties of cylindrical GaAs-AlxGa1−x As quantum dots under tilted electric and magnetic fields

Author:

Heyn Christian,Duque C. A.

Abstract

AbstractThis article makes a theoretical study of the optical and electronic properties in cylindrical GaAs-Alx Ga1−x As quantum dots in the presence of an arbitrarily located donor impurity and considering the simultaneous effects of tilted electric and magnetic fields. The studies are developed in the effective mass and parabolic band approximations. The solution of the Schrödinger equation is done through the finite element method considering tetrahedral meshes that can be adapted to regions where there are abrupt variations of the materials that make up the structure. Among the many results, reported for the first time in this article, we can mention: (i) the electronic spectrum, without and with shallow donor impurity, considering separate and combined effects of tilted electric and magnetic fields, (ii) the ground state binding energy as a function of the external electric and magnetic fields, their orientations concerning the axial axis of the quantum dot, and the impurity position, (iii) the squared reduced dipole matrix elements for impurity related inter-level optical transitions as a function of the tilted electric and magnetic fields and impurity position, and (iv) the optical absorption coefficient between the ground state and at least the first fifteen lowest excited states under tilted electric and magnetic fields and considering several impurity positions. From this study it can be concluded that the presence of tilted electric and magnetic fields and on-center or off-center shallow donor impurities, ostensibly enrich the optical and electronic properties of the system. It is observed that due to the rupture of the azimuthal symmetry of the cylindrical quantum dot, important modifications of the selection rules for inter-level transitions between states appear.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3