Enhanced cervical precancerous lesions detection and classification using Archimedes Optimization Algorithm with transfer learning

Author:

Allogmani Ayed S.,Mohamed Roushdy M.,Al-shibly Nasser M.,Ragab Mahmoud

Abstract

AbstractCervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3