Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model

Author:

A. Mansouri Rasha,Ragab MahmoudORCID

Abstract

Recently, artificial intelligence (AI) with deep learning (DL) and machine learning (ML) has been extensively used to automate labor-intensive and time-consuming work and to help in prognosis and diagnosis. AI’s role in biomedical and biological imaging is an emerging field of research and reveals future trends. Cervical cell (CCL) classification is crucial in screening cervical cancer (CC) at an earlier stage. Unlike the traditional classification method, which depends on hand-engineered or crafted features, convolution neural network (CNN) usually categorizes CCLs through learned features. Moreover, the latent correlation of images might be disregarded in CNN feature learning and thereby influence the representative capability of the CNN feature. This study develops an equilibrium optimizer with ensemble learning-based cervical precancerous lesion classification on colposcopy images (EOEL-PCLCCI) technique. The presented EOEL-PCLCCI technique mainly focuses on identifying and classifying cervical cancer on colposcopy images. In the presented EOEL-PCLCCI technique, the DenseNet-264 architecture is used for the feature extractor, and the EO algorithm is applied as a hyperparameter optimizer. An ensemble of weighted voting classifications, namely long short-term memory (LSTM) and gated recurrent unit (GRU), is used for the classification process. A widespread simulation analysis is performed on a benchmark dataset to depict the superior performance of the EOEL-PCLCCI approach, and the results demonstrated the betterment of the EOEL-PCLCCI algorithm over other DL models.

Funder

Deanship of Scientific Research (DSR) at King Abdul-Aziz University

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3