Role of CASP7 polymorphisms in noise-induced hearing loss risk in Han Chinese population

Author:

Ruan Yanmei,Zhang Jinwei,Mai Shiqi,Zeng Wenfeng,Huang Lili,Gu Chunrong,Liu Keping,Ma Yuying,Wang Zhi

Abstract

AbstractGenetic factors and gene-environment interaction may play an important role in the development of noise induced hearing loss (NIHL). 191 cases and 191 controls were selected by case–control study. Among them, case groups were screened from workers exposed to noise in binaural high-frequency hearing thresholds greater than 25 dB (A). Workers with hearing thresholds ≤ 25 dB (A) in any binaural frequency band were selected to the control group, based on matching factors such as age, exposure time to noise, and operating position. The blood samples from two groups of workers were subjected to DNA extraction and SNP sequencing of CASP3 and CASP7 genes using the polymerase chain reaction ligase detection reaction method. Conditional logistic regression correction was used to analyze the genetic variation associated with susceptibility to NIHL. There was an association between rs2227310 and rs4353229 of the CASP7 gene and the risk of NIHL. Compared with the GG genotype, the CC genotype of rs2227310 reduced the risk of NIHL. Compared with CC genotype, the TT genotype of rs4353229 reduced the risk of NIHL. Workers carrying the rs2227310GG and rs4353229CC genotype had an increased risk of NIHL compared to workers without any high-risk genotype. There were additive interaction and multiplication interaction between CASP7rs2227310 and CNE, and the same interaction between CASP7rs4353229 and CNE. The interaction between the CASP7 gene and CNE significantly increased the risk of NIHL. The genetic polymorphisms of CASP7rs2227310GG and CASP7rs4353229CC were associated with an increased risk of NIHL in Han Chinese population and have the potential to act as biomarkers for noise-exposed workers.

Funder

the Technological Project of Guangzhou Municipal Health Commission

the Major Technological Project of Guangzhou Municipal Health and Family Planning Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3