Urine stabilization and normalization strategies favor unbiased analysis of urinary EV content

Author:

Vago Riccardo,Radano Giorgia,Zocco Davide,Zarovni Natasa

Abstract

AbstractUrine features an ideal source of non-invasive diagnostic markers. Some intrinsic and methodological issues still pose barriers to its full potential as liquid biopsy substrate. Unlike blood, urine concentration varies with nutrition, hydration and environmental factors. Urine is enriched with EVs from urinary-genital tract, while its conservation, purification and normalization can introduce bias in analysis of EV subsets in inter-and intra-individual comparisons. The present study evaluated the methods that decrease such biases such as appropriate and feasible urine storage, optimal single-step EV purification method for recovery of proteins and RNAs from small urine volumes and a normalization method for quantitative analysis of urine EV RNAs. Ultracentrifugation, chemical precipitation and immuno-affinity were used to isolate EVs from healthy donors’ urine that was stored frozen or at room temperature for up to 6 months. Multiple urine biochemical and EV parameters, including particle count and protein content, were compared across urine samples. To this purpose nanoparticle tracking analysis (NTA) and protein assessment by BCA, ELISA and WB assays were performed. These measurements were correlated with relative abundances of selected EV mRNAs and miRNAs assessed by RT-PCR and ranked for the ability to reflect and correct for EV content variations in longitudinal urine samples. All purification methods enabled recovery and downstream analysis of EVs from as few as 1 ml of urine. Our findings highlight long term stability of EV RNAs upon urine storage at RT as well as excellent correlation of EV content in urine with some routinely measured biochemical features, such as total urine protein and albumin, but not creatinine most conventionally used for urine normalization. Comparative evaluation of mRNA and miRNAs in EV isolates revealed specific RNAs, in particular RNY4 and small miRNA panel, levels of which well reflected the inter-sample EV variation and therefore useful as possible post-analytical normalizers of EV RNA content. We describe some realistic urine processing and normalization solutions for unbiased readout of EV biomarker studies and routine clinical sampling and diagnostics providing the input for design of larger validation studies employing urine EVs as biomarkers for particular conditions and diseases.

Funder

Regione Lombardia & Fondazione Cariplo

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3