Multilayer perceptron-based prediction of stroke mimics in prehospital triage

Author:

Zhang Zheyu,Zhou Dengfeng,Zhang Jungen,Xu Yuyun,Lin Gaoping,Jin Bo,Liang Yingchuan,Geng Yu,Zhang Sheng

Abstract

AbstractThe identification of stroke mimics (SMs) in patients with stroke could lead to delayed diagnosis and waste of medical resources. Multilayer perceptron (MLP) was proved to be an accurate tool for clinical applications. However, MLP haven’t been applied in patients with suspected stroke onset within 24 h. Here, we aimed to develop a MLP model to predict SM in patients. We retrospectively reviewed the data of patients with a prehospital diagnosis of suspected stroke between July 2017 and June 2021. SMs were confirmed during hospitalization. We included demographic information, clinical manifestations, medical history, and systolic and diastolic pressure on admission. First, the cohort was randomly divided into a training set (70%) and an external testing set (30%). Then, the least absolute shrinkage and selection operator (LASSO) method was used in feature selection and an MLP model was trained based on the selected items. Then, we evaluated the performance of the model using the ten-fold cross validation method. Finally, we used the external testing set to compare the MLP model with FABS scoring system (FABS) and TeleStroke Mimic Score (TM-Score) using a receiver operator characteristic (ROC) curve. In total, 402 patients were included. Of these, 82 (20.5%) were classified as SMs. During the ten-fold cross validation, the mean area under the ROC curve (AUC) of 10 training sets and 10 validation sets were 0.92 and 0.87, respectively. In the external testing set, the AUC of the MLP model was significantly higher than that of the FABS (0.855 vs. 0.715, P = 0.038) and TM-Score (0.855 vs. 0.646, P = 0.006). The MLP model had significantly better performance in predicting SMs than FABS and TM-Score.

Funder

National Natural Science Foundation of Zhejiang Province

Key Project of the Department of Science and Technology of Zhejiang Province

Medical Science and Technology Project of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3