A Deep Learning Ensemble With Data Resampling for Credit Card Fraud Detection
Author:
Affiliation:
1. Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa
Funder
South African National Research Foundation
South African National Research Foundation Incentive
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10081315.pdf?arnumber=10081315
Reference100 articles.
1. A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework
2. Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the UNSW-NB15 Dataset
3. A CNN-LSTM Model for Tailings Dam Risk Prediction
4. Deep Ensemble Model for COVID-19 Diagnosis and Classification Using Chest CT Images
5. Estimating the compressive strength of rectangular fiber reinforced polymer–confined columns using multilayer perceptron, radial basis function, and support vector regression methods
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Supervised machine learning in drug discovery and development: Algorithms, applications, challenges, and prospects;Machine Learning with Applications;2024-09
2. Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications;Information;2024-08-25
3. Imbalanced rock burst assessment using variational autoencoder-enhanced gradient boosting algorithms and explainability;Underground Space;2024-08
4. Wave Hedges distance-based feature fusion and hybrid optimization-enabled deep learning for cyber credit card fraud detection;Knowledge and Information Systems;2024-07-24
5. A Deep Learning and Resampling Approach to Credit Card Fraud Detection;2024 11th International Conference on Wireless Networks and Mobile Communications (WINCOM);2024-07-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3