Effect of enzymatic modification on the structure and rheological properties of diluted alkali-soluble pectin fraction rich in RG-I

Author:

Kaczmarska Adrianna,Pieczywek Piotr M.,Cybulska Justyna,Zdunek Artur

Abstract

AbstractThis study focuses on pectin covalently linked in cell walls from two sources, apples and carrots, that was extracted using diluted alkali, and it describes changes in the rheological properties of diluted alkali-soluble pectin (DASP) due to enzymatic treatment. Given DASP’s richness of rhamnogalacturonan I (RG-I), RG-I acetyl esterase (RGAE), rhamnogalacturonan endolyase (RGL), and arabinofuranosidase (ABF) were employed in various combinations for targeted degradation of RG-I pectin chains. Enzymatic degradations were followed by structural studies of pectin molecules using atomic force microscopy (AFM) as well as measurements of rheological and spectral properties. AFM imaging revealed a significant increase in the length of branched molecules after incubation with ABF, suggesting that arabinose side chains limit RG-I aggregation. Structural modifications were confirmed by changes in the intensity of bands in the pectin fingerprint and anomeric region on Fourier transform infrared spectra. ABF treatment led to a decrease in the stability of pectic gels, while the simultaneous use of ABF, RGAE, and RGL enzymes did not increase the degree of aggregation compared to the control sample. These findings suggest that the association of pectin chains within the DASP fraction may rely significantly on intermolecular interactions. Two mechanisms are proposed, which involve side chains as short-range attachment points or an extended linear homogalacturonan conformation favoring inter-chain interactions over self-association.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3