Quantifying physical insights cooperatively with exhaustive search for Bayesian spectroscopy of X-ray photoelectron spectra

Author:

Kumazoe Hiroyuki,Iwamitsu Kazunori,Imamura Masaki,Takahashi Kazutoshi,Mototake Yoh-ichi,Okada Masato,Akai Ichiro

Abstract

AbstractWe analyzed the X-ray photoelectron spectra (XPS) of carbon 1s states in graphene and oxygen-intercalated graphene grown on SiC(0001) using Bayesian spectroscopy. To realize highly accurate spectral decomposition of the XPS spectra, we proposed a framework for discovering physical constraints from the absence of prior quantified physical knowledge, in which we designed the prior probabilities based on the found constraints and the physically required conditions. This suppresses the exchange of peak components during replica exchange Monte Carlo iterations and makes possible to decompose XPS in the case where a reliable structure model or a presumable number of components is not known. As a result, we have successfully decomposed XPS of one monolayer (1ML), two monolayers (2ML), and quasi-freestanding 2ML (qfs-2ML) graphene samples deposited on SiC substrates with the meV order precision of the binding energy, in which the posterior probability distributions of the binding energies were obtained distinguishably between the different components of buffer layer even though they are observed as hump and shoulder structures because of their overlapping.

Funder

New Energy and Industrial Technology Development Organization

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3