Low Power, CMOS-MoS2 Memtransistor based Neuromorphic Hybrid Architecture for Wake-Up Systems

Author:

Gupta Sarthak,Kumar PratikORCID,Paul Tathagata,van Schaik André,Ghosh Arindam,Thakur Chetan Singh

Abstract

Abstract Neuromorphic architectures have become essential building blocks for next-generation computational systems, where intelligence is embedded directly onto low power, small area, and computationally efficient hardware devices. In such devices, realization of neural algorithms requires storage of weights in digital memories, which is a bottleneck in terms of power and area. We hereby propose a biologically inspired low power, hybrid architectural framework for wake-up systems. This architecture utilizes our novel high-performance, ultra-low power molybdenum disulphide (MoS2) based two-dimensional synaptic memtransistor as an analogue memory. Furthermore, it exploits random device mismatches to implement the population coding scheme. Power consumption per CMOS neuron block was found to be 3 nw in the 65 nm process technology, while the energy consumption per cycle was 0.3 pJ for potentiation and 20 pJ for depression cycles of the synaptic device. The proposed framework was demonstrated for classification and regression tasks, using both off-chip and simplified on-chip sign-based learning techniques.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3