Abstract
AbstractSoil amendments are known to promote several plant growth parameters. In many agro-ecosystems, water scarcity and drought induced phosphorus deficiency limits crop yield significantly. Considering the climate change scenario, drought and related stress factors will be even more severe endangering the global food security. Therefore, two parallel field trials were conducted to examine at what extent soil amendment of leonardite and humic acid would affect drought and phosphorus tolerance of maize. The treatments were: control (C: 100% A pan and 125 kg P ha−1), P deficiency (phosphorus stress (PS): 62.5 kg P ha−1), water deficit stress (water stress (WS): 67% A pan), and PS + WS (67% A pan and 62.5 kg P ha−1). Three organic amendments were (i) no amendment, (ii) 625 kg S + 750 kg leonardite ha−1 and (iii) 1250 kg S + 37.5 kg humic acid ha−1) tested on stress treatments. Drought and P deficiency reduced plant biomass, grain yield, chlorophyll content, Fv/Fm, RWC and antioxidant activity (superoxide dismutase, peroxidase, and catalase), but increased electrolyte leakage and leaf H2O2 in maize plants. The combined stress of drought and P deficiency decreased further related plant traits. Humic acid and leonardite enhanced leaf P and yield in maize plants under PS. A significant increase in related parameters was observed with humic acid and leonardite under WS. The largest increase in yield and plant traits in relation to humic acid and leonardite application was observed under combined stress situation. The use of sulfur-enriched amendments can be used effectively to maintain yield of maize crop in water limited calcareous soils.
Publisher
Springer Science and Business Media LLC
Reference114 articles.
1. FAO. Climate change. (FAO, 2008).
2. Cheeseman, J. In Halophytes for food security in dry lands 111–123 (Elsevier, 2016).
3. Kaurin, A. et al. Resilience of bacteria, archaea, fungi and N-cycling microbial guilds under plough and conservation tillage, to agricultural drought. Soil. Biol. Biochem. 120, 233–245 (2018).
4. Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil. Sci. 60, 158–169 (2009).
5. Shehab, G. G., AHMED, O. K. & El-Beltagi, H. S. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not. Bot. Horti Agrobot. Cluj. Napoca 38, 139–148 (2010).
Cited by
116 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献