The effect of combined drought and trace metal elements stress on the physiological response of three Miscanthus hybrids

Author:

Krzyżak Jacek,Rusinowski Szymon,Sitko Krzysztof,Szada-Borzyszkowska Alicja,Stec Radosław,Janota Paulina,Jensen Elaine,Kiesel Andreas,Pogrzeba Marta

Abstract

AbstractDrought is a serious threat worldwide and has a significant impact on agricultural production and soil health. It can pose an even greater threat when it involves land contaminated with trace metal element (TMEs). To prevent desertification, such land should be properly managed and growing Miscanthus for energy or raw material purposes could be a solution. The effects of drought and TMEs were studied in a pot experiment on three different Miscanthus hybrids (conventional Miscanthus × giganteus, TV1 and GNT10) considering growth parameters, photosynthetic parameters and elemental composition of roots, rhizomes and shoots. GNT10 was characterised by the weakest gas exchange among the hybrids, which was compensated by the highest number of leaves and biomass. The strongest correlations between the studied parameters were found for TV1, which might indicate a high sensitivity to TME stress. For M × g and GNT10, the main mechanisms for coping with stress seem to be biomass management through number of shoots and leaves and gas exchange. The main factor determining the extent of accumulation of TMEs was the amount of water applied in the experimental treatment, which was related to the location of the plant in the aniso-isohydric continuum. GNT10 was the most resistant plant to combined stress, while it responded similarly to TV1 when drought and trace metal elements were applied separately.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3