Redox Regulation by Priming Agents Toward a Sustainable Agriculture

Author:

Tripathi Durgesh Kumar1ORCID,Bhat Javaid Akhter2,Antoniou Chrystalla3,Kandhol Nidhi1,Singh Vijay Pratap4ORCID,Fernie Alisdair R5ORCID,Fotopoulos Vasileios3ORCID

Affiliation:

1. Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh , AUUP Campus Sector-125, Noida 201313, India

2. Zhejiang Lab , Hangzhou 310012, China

3. Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology , Limassol 3036, Cyprus

4. Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College , A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India

5. Max Planck Institute of Molecular Plant Physiology , Am Mühlenberg 1, Potsdam-Golm 14476, Germany

Abstract

Abstract Plants are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species leading to oxidative stress and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals has been recently recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, glutathione, peroxiredoxins, glutaredoxins, ascorbate, thioredoxins and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and health of crop plants, with an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play a crucial role in the modulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components toward enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are discussed, with an aim of encouraging future research in this field toward effective application of priming in stress management in crops including horticultural species.

Funder

Cut

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3