A novel neural network model with distributed evolutionary approach for big data classification

Author:

Haritha K.,Shailesh S.,Judy M. V.,Ravichandran K. S.,Krishankumar Raghunathan,Gandomi Amir H.

Abstract

AbstractThe considerable improvement of technology produced for various applications has resulted in a growth in data sizes, such as healthcare data, which is renowned for having a large number of variables and data samples. Artificial neural networks (ANN) have demonstrated adaptability and effectiveness in classification, regression, and function approximation tasks. ANN is used extensively in function approximation, prediction, and classification. Irrespective of the task, ANN learns from the data by adjusting the edge weights to minimize the error between the actual and predicted values. Back Propagation is the most frequent learning technique that is used to learn the weights of ANN. However, this approach is prone to the problem of sluggish convergence, which is especially problematic in the case of Big Data. In this paper, we propose a Distributed Genetic Algorithm based ANN Learning Algorithm for addressing challenges associated with ANN learning for Big data. Genetic Algorithm is one of the well-utilized bio-inspired combinatorial optimization methods. Also, it is possible to parallelize it at multiple stages, and this may be done in an extremely effective manner for the distributed learning process. The proposed model is tested with various datasets to evaluate its realizability and efficiency. The results obtained from the experiments show that after a specific volume of data, the proposed learning method outperformed the traditional methods in terms of convergence time and accuracy. The proposed model outperformed the traditional model by almost 80% improvement in computational time.

Funder

Óbuda University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3