Energy harvesting performance of an EDLC power generator based on pure water and glycerol mixture: analytical modeling and experimental validation

Author:

Kim Dong,Kim Dae YeonORCID,Shim Jaesool,Kim Kyung ChunORCID

Abstract

AbstractA liquid droplet oscillating between two plane electrodes was visualized, and the electrical power generation based on the reverse-electrowetting-on-dielectric (REWOD) phenomenon was measured. For the upper plate, a hydrophobic surface treated by PTFE was used, and the lower plate was tested using the hydrophilic surface properties of ITO glass. To analyze the dynamic behavior of an oscillating liquid bridge, a modeling study was carried out using the phase field method based on the finite element method. The dynamic contact angle of the oscillating liquid bridge was modeled based on advancing and receding contact angles. The variable interfacial areas between the liquid and solid surfaces were calculated and agreed well with the experimental results within a 10% error band. Furthermore, experimental and analytical studies were carried out to examine the REWOD energy harvesting characteristics of the glycerol-water mixtures in various concentrations. As a result, the peak voltage output was obtained at a specific concentration of the glycerol mixture, and the power density of the oscillating liquid bridge at this point was up to 2.23 times higher than that of pure water.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3