High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures

Author:

Huang Xinghao1ORCID,Liu Liangshu1ORCID,Lin Yung Hsin1,Feng Rui2,Shen Yiyang2,Chang Yuanning3,Zhao Hangbo14ORCID

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

2. Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.

3. Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA.

4. Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

Abstract

Stretchable strain sensors are essential for various applications such as wearable electronics, prosthetics, and soft robotics. Strain sensors with high strain range, minimal hysteresis, and fast response speed are highly desirable for accurate measurements of large and dynamic deformations of soft bodies. Current stretchable strain sensors mostly rely on deformable conducting materials, which often have difficulties in achieving these properties simultaneously. In this study, we introduce capacitive strain sensor concepts based on origami-inspired three-dimensional mesoscale electrodes formed by a mechanically guided assembly process. These sensors exhibit up to 200% stretchability with 1.2% degree of hysteresis, <22 ms response time, small sensing area (~5 mm 2 ), and directional strain responses. To showcase potential applications, we demonstrate the use of distributed strain sensors for measuring multimodal deformations of a soft continuum arm.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3