Real-time prediction of ROP based on GRU-Informer

Author:

Tu Bingrui,Bai Kai,Zhan Ce,Zhang Wanxing

Abstract

AbstractAccurate ROP (rate of penetration) prediction contributes to better production task planning, ensuring efficient production line operation, and reducing production costs. ROP prediction is influenced by multiple factors, making accurate prediction challenging. Current research primarily relies on historical data for training and modeling, lacking methods for real-time ROP prediction. This paper introduces a GRU-Informer model for real-time ROP prediction. The model employs GRU (Gated Recurrent Unit) neural networks at the lower level to capture short-term correlations in drilling parameters and uses the Informer model at the top to address long-term dependencies among drilling parameters. Thus, the GRU-Informer can capture both short-term and long-term time dependencies, providing better ROP predictions. This paper constructs a dataset using historical data from a southwestern Chinese oil field for experimentation. RMSE (Root Mean Square Error), MAE (mean absolute error) and $${R}^{2}$$ R 2 (Coefficient of Determination) are employed as evaluation metrics for the model. Experimental results demonstrate that the GRU-Informer outperforms traditional recurrent neural networks like LSTM (Long Short-Term Memory), GRU neural networks and Informer in real-time ROP prediction, indicating its practical value.

Funder

Open Fund of Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas

Open Fund of Xi’an Key Laboratory of Tight oil

Development of the Scientific Research Projects of the Hubei Provincial Department of Education

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3