Author:
Tu Bingrui,Bai Kai,Zhan Ce,Zhang Wanxing
Abstract
AbstractAccurate ROP (rate of penetration) prediction contributes to better production task planning, ensuring efficient production line operation, and reducing production costs. ROP prediction is influenced by multiple factors, making accurate prediction challenging. Current research primarily relies on historical data for training and modeling, lacking methods for real-time ROP prediction. This paper introduces a GRU-Informer model for real-time ROP prediction. The model employs GRU (Gated Recurrent Unit) neural networks at the lower level to capture short-term correlations in drilling parameters and uses the Informer model at the top to address long-term dependencies among drilling parameters. Thus, the GRU-Informer can capture both short-term and long-term time dependencies, providing better ROP predictions. This paper constructs a dataset using historical data from a southwestern Chinese oil field for experimentation. RMSE (Root Mean Square Error), MAE (mean absolute error) and $${R}^{2}$$
R
2
(Coefficient of Determination) are employed as evaluation metrics for the model. Experimental results demonstrate that the GRU-Informer outperforms traditional recurrent neural networks like LSTM (Long Short-Term Memory), GRU neural networks and Informer in real-time ROP prediction, indicating its practical value.
Funder
Open Fund of Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas
Open Fund of Xi’an Key Laboratory of Tight oil
Development of the Scientific Research Projects of the Hubei Provincial Department of Education
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献