A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection

Author:

Bourgoyne A.T.1,Young F.S.2

Affiliation:

1. Louisiana State U., Baton Rouge

2. Baroid Div. of N L Industries, Inc.

Abstract

Abstract Over the past decade, a number of drilling models have been proposed for the optimization of The rotary drilling process and the detection of abnormal pressure while drilling. These techniques have pressure while drilling. These techniques have been largely based Upon limited held and laboratory data and often yield inaccurate results. Recent developments in onsite well monitoring systems have made possible the routine determination of the best mathematical model for drilling optimization and pore pressure detection. This modeling is accomplished through a multiple regression analysis of detailed drilling data taken over short intervals. Included in the analysis are the effects of formation strength, formation depth, formation compaction, pressure differential across the hole bottom, bit diameter and bit weight, rotary speed, bit wear, and bit hydraulics.This paper presents procedures for using the regressed drilling model for selecting bit weight rotary speed, and bit hydraulics, and calculating formation pressure from drilling data. The application of the procedure is illustrated using field data. Introduction Operators engaged in the search for hydrocarbon reserves are facing much higher drilling costs as more wells are drilled in hostile environments and to greater depths. A study by Young and Tanner has indicated that the average well cost per foot drilled is increasing at approximately 7.5 percent/ year. Recently, more emphasis has been placed on the collection of detailed drilling data to aid in the selection of improved drilling practices.At present, many people are using one drilling model for optimizing bit weight and rotary speed, a different drilling model for optimizing jet bit hydraulics, and yet another model for detecting abnormal pressure from drilling data. Each model has been based on meager laboratory and field data. We have tried here to combine what is known about the rotary drilling process into a single model, develop equations for calculating formation pore pressure and optimum bit weight, rotary speed, and jet bit hydraulics that are consistent with that model, and provide a method for systematically "calibrating" the drilling model using field data. DRILLING MODEL The drilling model selected for predicting be effect of the various drilling parameters, xj, on penetration rate, dD/dt, is given by penetration rate, dD/dt, is given by(1) when Exp (z) is used to indicate the exponential function ez. The modeling of drilling behavior in a given formation type is accomplished by selecting the constants a, through a 8 in Eq. 1. Since Eq. 1 is linear, those constants can be determined from a multiple regression analysis of field data. EFFECT OF FORMATION STRENGTH The constant a, primarily represents the effect of formation strength on penetration rate. It is inversely proportional to the natural logarithm of the square proportional to the natural logarithm of the square of the drillability strength parameter discussed by Maurer. It also includes the effect on penetration rate of drilling parameters that have not yet been mathematically modeled; for example, the effect of drilled solids. EFFECT OF COMPACTION The terms a2x2 and a3x3 model the effect of compaction on penetration rate. x2 is defined by(2) and thus assumes an exponential decrease in penetration rate with depth in a normally compacted penetration rate with depth in a normally compacted formation. The exponential nature of the normal compaction trend is indicated by the published microbit and field data of Murray, and also by the field data of Combs (see Fig. 1). SPEJ P. 371

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3