Enhancing agriculture through real-time grape leaf disease classification via an edge device with a lightweight CNN architecture and Grad-CAM

Author:

Karim Md. Jawadul,Goni Md. Omaer Faruq,Nahiduzzaman Md.,Ahsan Mominul,Haider Julfikar,Kowalski Marcin

Abstract

AbstractCrop diseases can significantly affect various aspects of crop cultivation, including crop yield, quality, production costs, and crop loss. The utilization of modern technologies such as image analysis via machine learning techniques enables early and precise detection of crop diseases, hence empowering farmers to effectively manage and avoid the occurrence of crop diseases. The proposed methodology involves the use of modified MobileNetV3Large model deployed on edge device for real-time monitoring of grape leaf disease while reducing computational memory demands and ensuring satisfactory classification performance. To enhance applicability of MobileNetV3Large, custom layers consisting of two dense layers were added, each followed by a dropout layer, helped mitigate overfitting and ensured that the model remains efficient. Comparisons among other models showed that the proposed model outperformed those with an average train and test accuracy of 99.66% and 99.42%, with a precision, recall, and F1 score of approximately 99.42%. The model was deployed on an edge device (Nvidia Jetson Nano) using a custom developed GUI app and predicted from both saved and real-time data with high confidence values. Grad-CAM visualization was used to identify and represent image areas that affect the convolutional neural network (CNN) classification decision-making process with high accuracy. This research contributes to the development of plant disease classification technologies for edge devices, which have the potential to enhance the ability of autonomous farming for farmers, agronomists, and researchers to monitor and mitigate plant diseases efficiently and effectively, with a positive impact on global food security.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3