Plant disease detection and classification techniques: a comparative study of the performances

Author:

Demilie Wubetu BarudORCID

Abstract

AbstractOne of the essential components of human civilization is agriculture. It helps the economy in addition to supplying food. Plant leaves or crops are vulnerable to different diseases during agricultural cultivation. The diseases halt the growth of their respective species. Early and precise detection and classification of the diseases may reduce the chance of additional damage to the plants. The detection and classification of these diseases have become serious problems. Farmers’ typical way of predicting and classifying plant leaf diseases can be boring and erroneous. Problems may arise when attempting to predict the types of diseases manually. The inability to detect and classify plant diseases quickly may result in the destruction of crop plants, resulting in a significant decrease in products. Farmers that use computerized image processing methods in their fields can reduce losses and increase productivity. Numerous techniques have been adopted and applied in the detection and classification of plant diseases based on images of infected leaves or crops. Researchers have made significant progress in the detection and classification of diseases in the past by exploring various techniques. However, improvements are required as a result of reviews, new advancements, and discussions. The use of technology can significantly increase crop production all around the world. Previous research has determined the robustness of deep learning (DL) and machine learning (ML) techniques such as k-means clustering (KMC), naive Bayes (NB), feed-forward neural network (FFNN), support vector machine (SVM), k-nearest neighbor (KNN) classifier, fuzzy logic (FL), genetic algorithm (GA), artificial neural network (ANN), convolutional neural network (CNN), and so on. Here, from the DL and ML techniques that have been included in this particular study, CNNs are often the favored choice for image detection and classification due to their inherent capacity to autonomously acquire pertinent image features and grasp spatial hierarchies. Nevertheless, the selection between conventional ML and DL hinges upon the particular problem, the accessibility of data, and the computational capabilities accessible. Accordingly, in numerous advanced image detection and classification tasks, DL, mainly through CNNs, is preferred when ample data and computational resources are available and show good detection and classification effects on their datasets, but not on other datasets. Finally, in this paper, the author aims to keep future researchers up-to-date with the performances, evaluation metrics, and results of previously used techniques to detect and classify different forms of plant leaf or crop diseases using various image-processing techniques in the artificial intelligence (AI) field.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3