Flat Band and Hole-induced Ferromagnetism in a Novel Carbon Monolayer

Author:

You Jing-Yang,Gu Bo,Su Gang

Abstract

AbstractIn recent experiments, superconductivity and correlated insulating states were observed in twisted bilayer graphene (TBG) with small magic angles, which highlights the importance of the flat bands near Fermi energy. However, the moiré pattern of TBG consists of more than ten thousand carbon atoms that is not easy to handle with conventional methods. By density functional theory calculations, we obtain a flat band at EF in a novel carbon monolayer coined as cyclicgraphdiyne with the unit cell of eighteen atoms. By doping holes into cyclicgraphdiyne to make the flat band partially occupied, we find that cyclicgraphdiyne with 1/8, 1/4, 3/8 and 1/2 hole doping concentration shows ferromagnetism (half-metal) while the case without doping is nonmagnetic, indicating a hole-induced nonmagnetic-ferromagnetic transition. The calculated conductivity of cyclicgraphdiyne with 1/8, 1/4 and 3/8 hole doping concentration is much higher than that without doping or with 1/2 hole doping. These results make cyclicgraphdiyne really attractive. By studying several carbon monolayers, we find that a perfect flat band may occur in the lattices with both separated or corner-connected triangular motifs with only including nearest-neighboring hopping of electrons, and the dispersion of flat band can be tuned by next-nearest-neighboring hopping. Our results shed insightful light on the formation of flat band in TBG. The present study also poses an alternative way to manipulate magnetism through doping flat band in carbon materials.

Funder

University of Chinese Academy of Sciences

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3