Abstract
Abstract
The kagome lattice is a well-known model system for the investigation of strong correlation and topological electronic phenomena due to the intrinsic flat band, magnetic frustration, etc. Introducing chirality into the kagome lattice would bring about new physics due to the unique symmetry, which is still yet to be fully explored. Here we report the investigation on a two-dimensional chiral kagome lattice utilizing tight binding band calculation and topological index analysis. It is found that the periodic chiral kagome lattice would bring about a robust zero-energy flat band. Furthermore, in the Su–Schrieffer–Heeger type dimer-/trimerized breathing chiral kagome lattice with particular edge terminations, topological corner states or metallic edge states would appear, implying new candidates for the second-order topological insulator. We also proposed the construction strategy for such lattices employing the scanning tunneling microscope atom manipulation technique.
Funder
Fundamental Research Fundings for the Central Universities
Strategic Priority Research Program of the Chinese Academy of Sciences
Key R&D Program of China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献