Abstract
AbstractUsers of hearing-assistive devices often struggle to locate and segregate sounds, which can make listening in schools, cafes, and busy workplaces extremely challenging. A recent study in unilaterally implanted CI users showed that sound-localisation was improved when the audio received by behind-the-ear devices was converted to haptic stimulation on each wrist. We built on this work, using a new signal-processing approach to improve localisation accuracy and increase generalisability to a wide range of stimuli. We aimed to: (1) improve haptic sound-localisation accuracy using a varied stimulus set and (2) assess whether accuracy improved with prolonged training. Thirty-two adults with normal touch perception were randomly assigned to an experimental or control group. The experimental group completed a 5-h training regime and the control group were not trained. Without training, haptic sound-localisation was substantially better than in previous work on haptic sound-localisation. It was also markedly better than sound-localisation by either unilaterally or bilaterally implanted CI users. After training, accuracy improved, becoming better than for sound-localisation by bilateral hearing-aid users. These findings suggest that a wrist-worn haptic device could be effective for improving spatial hearing for a range of hearing-impaired listeners.
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献