Using symbolic machine learning to assess and model substance transport and decay in water distribution networks

Author:

Laucelli Daniele Biagio,Enríquez Laura,Saldarriaga Juan,Giustolisi Orazio

Abstract

AbstractDrinking water infrastructures are systems of pipes which are generally networked. They play a crucial role in transporting and delivering clean water to people. The water quality analysis refers to the evaluation of the advective diffusion of any substance in drinking water infrastructures from source nodes. Such substances could be a contamination for the system or planned for the disinfection, e.g., chlorine. The water quality analysis is performed by integrating the differential equation in the pipes network domain using the kinetics of the substance decay and the Lagrangian scheme. The kinetics can be formulated using a specific reaction order depending on the substance characteristics. The basis for the integration is the pipes velocity field calculated by means of hydraulic analysis. The aim of the present work is to discover the intrinsic mechanism of the substance transport in drinking water infrastructures, i.e., their pipes network domain, using the symbolic machine learning, named Evolutionary Polynomial Regression, which provides “synthetic” models (symbolic formulas) from data. We demonstrated, using one real network and two test networks, that the concentration at each node of the network can be predicted using the travel time along the shortest path(s) between the source and each node. Additionally, the formula models provided by symbolic machine learning allowed discovering that a unique formula based on kinetic reaction model structure allows predicting the residual substance concentration at each node, given the source node concentration, surrogating with a good accuracy the integration of the differential equations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3