A symbolic data-driven technique based on evolutionary polynomial regression

Author:

Giustolisi Orazio1,Savic Dragan A.2

Affiliation:

1. Faculty of Engineering, Department of Civil and Environmental Engineering, Technical University of Bari, via Turismo 8, Q. re Paolo VI, 74100, Taranto, Italy

2. Centre for Water Systems, Department of Engineering, School of Engineering, Computer Science and Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UKTel: +44 1392 263637; E-mail: d.savic@ex.ac.uk

Abstract

This paper describes a new hybrid regression method that combines the best features of conventional numerical regression techniques with the genetic programming symbolic regression technique. The key idea is to employ an evolutionary computing methodology to search for a model of the system/process being modelled and to employ parameter estimation to obtain constants using least squares. The new technique, termed Evolutionary Polynomial Regression (EPR) overcomes shortcomings in the GP process, such as computational performance; number of evolutionary parameters to tune and complexity of the symbolic models. Similarly, it alleviates issues arising from numerical regression, including difficulties in using physical insight and over-fitting problems. This paper demonstrates that EPR is good, both in interpolating data and in scientific knowledge discovery. As an illustration, EPR is used to identify polynomial formulæ with progressively increasing levels of noise, to interpolate the Colebrook-White formula for a pipe resistance coefficient and to discover a formula for a resistance coefficient from experimental data.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 318 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3