Differentiation of two swim bladdered fish species using next generation wideband hydroacoustics

Author:

Gugele Sarah M.,Widmer Marcus,Baer Jan,DeWeber J. Tyrell,Balk Helge,Brinker Alexander

Abstract

AbstractMonitoring fish populations in large, deep water bodies by conventional capture methodologies requires intensive fishing effort and often causes mass mortality of fish. Thus, it can be difficult to collect sufficient data using capture methods for understanding fine scale community dynamics associated with issues such as climate change or species invasion. Hydroacoustic monitoring is an alternative, less invasive technology that can collect higher resolution data over large temporal and spatial scales. Monitoring multiple species with hydroacoustics, however, usually requires conventional sampling to provide species level information. The ability to identify the species identity of similar-sized individuals using only hydroacoustic data would greatly expand monitoring capabilities and further reduce the need for conventional sampling. In this study, wideband hydroacoustic technology was used in a mesocosm experiment to differentiate between free swimming, similar-sized individuals of two swim-bladdered species: whitefish (Coregonus wartmanni) and stickleback (Gasterosteus aculeatus). Individual targets were identified in echograms and variation in wideband acoustic responses among individuals, across different orientations, and between species was quantified and visually examined. Random forest classification was then used to classify individual targets of known species identity, and had an accuracy of 73.4% for the testing dataset. The results show that species can be identified with reasonable accuracy using wideband hydroacoustics. It is expected that further mesocosm and field studies will help determine capabilities and limitations for classifying additional species and monitoring fish communities. Hydroacoustic species differentiation may offer novel possibilities for fisheries managers and scientists, marking the next crucial step in non-invasive fish monitoring.

Funder

"Fischereiabgabe" of the federal state Baden-Württemberg

LAZ BW Fischereiforschungsstelle

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference66 articles.

1. Collingsworth, P. D. et al. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Rev. Fish Biol. Fish. 27, 363–391 (2017).

2. Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and the Uncertainty (Routledge, Chapman and Hall Inc., 1992).

3. Bean, C. W., Winfield, I. J. & Fletcher, J. M. Stock assessment of the Arctic charr (Salvelinus alpinus) population in Loch Ness, UK in stock assessment. In Inland Fisheries (ed. Cowx, I. G.) 206–223 (Blackwell Scientific Publications, 1996).

4. Emmrich, M. et al. Strong correspondence between gillnet catch per effort and hydroacoustically derived fish biomass in stratified lakes. Freshw. Biol. 57, 2436–2448 (2012).

5. CEN (European Committee for Standardization). Water quality - sampling of fish with multi-mesh gillnets. European Committee for Standardization, European Standard EN 14757:2015 (Brussels, 2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3