Body temperature-dependent microRNA expression analysis in rats: rno-miR-374-5p regulates apoptosis in skeletal muscle cells via Mex3B under hypothermia

Author:

Umehara TakahiroORCID,Kagawa Shinichiro,Tomida Aiko,Murase Takehiko,Abe Yuki,Shingu Keita,Ikematsu Kazuya

Abstract

AbstractForensic diagnosis of fatal hypothermia is considered difficult because there are no specific findings. Accordingly, exploration of novel fatal hypothermia-specific findings is important. To elucidate the molecular mechanism of homeostasis in hypothermia and identify novel molecular markers to inform the diagnosis of fatal hypothermia, we focused on microRNA expression in skeletal muscle, which plays a role in cold-induced thermogenesis in mammals. We generated rat models of mild, moderate, and severe hypothermia, and performed body temperature-dependent microRNA expression analysis of the iliopsoas muscle using microarray and quantitative real-time PCR (qRT-PCR). The results show that rno-miR-374-5p expression was significantly induced only by severe hypothermia. Luciferase reporter assay and qRT-PCR results indicated that Mex3B expression was regulated by rno-miR-374-5p and decreased with decreasing body temperature. Gene ontology analysis indicated the involvement of Mex3B in positive regulation of GTPase activity. siRNA analysis showed that Mex3B directly or indirectly regulated Kras expression in vitro, and significantly changed the expression of apoptosis-related genes and proteins. Collectively, these results indicate that rno-miR-374-5p was activated by a decrease in body temperature, whereby it contributed to cell survival by suppressing Mex3B and activating or inactivating Kras. Thus, rno-miR-374-5p is a potential supporting marker for the diagnosis of fatal hypothermia.

Funder

Japan Society for the Promotion of Science

The Uehara Memorial Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3