Identification and quantification of target metabolites combined with transcriptome of two rheum species focused on anthraquinone and flavonoids biosynthesis

Author:

Liu Jing,Leng Liang,Liu Yan,Gao Han,Yang Wei,Chen Sha,Liu An

Abstract

AbstractRheum emodi is a perennial herb and an important medicinal plant, with anthraquinones and flavonoids as its main bioactive compounds. However, there is little knowledge about the biosynthetic pathway of anthraquinones in rhubarbs. In this study, we qualitatively and quantitatively assessed 62 pharmacological metabolites in rhubarb using dynamic multiple reaction monitoring (dMRM) of triple-quadrupole mass spectrometry (QqQ-MS), including 21 anthraquinones, 17 flavonoids, 6 stilbenes, 12 gallate esters, 3 tannins, and 3 others. Besides, the metabolomics results showed significant differences among all the 60 metabolites, except for gallic acid and piceatannol-O-β-glucoside. The combined transcriptome data of R. palmatum L. (RPL) and R. officinale Baill. (ROB) showed that 21,691 unigenes were annotated in the metabolic pathways. Taken together, 17 differentially expressed genes (DEGs) were associated with the anthraquinone biosynthetic pathway. Additionally, a significant correlation between anthraquinone peak intensity and DEG expression level existed, validating that DEGs contribute to the anthraquinone biosynthetic pathway. RT-qPCR results showed that the cluster-14354.38156 gene may catalyze the O-methylation of emodin to produce physcion. This study provides a useful resource for further studies on secondary metabolism in rhubarb and the combination analysis of transcriptome and metabolome, which can help with the discovery of enzyme genes involved in metabolite biosynthesis.

Funder

the Fundamental Research Funds for the Central public welfare research institutes

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3